C*-Isomorphisms Associated with Two Projections on a Hilbert C*-Module

نویسندگان

چکیده

Motivated by two norm equations used to characterize the Friedrichs angle, this paper studies C*-isomorphisms associated with projections introducing matched triple and semi-harmonious pair of projections. A (P, Q, H) is said be if H a Hilbert C*-module, P Q are on such that their infimum ∧ exists as an element $${\cal L}(H)$$ , where denotes set all adjointable operators H. The C*-subalgebras generated elements in {P − I} {P, denoted i(P, o(P, H), respectively. It proved each faithful representation (π, X) can induce $$(\tilde \pi ,X)$$ $$\matrix{{\tilde (P - \wedge Q) = (P) (Q),} \hfill \cr {\tilde (Q (Q) (Q).} } $$ When semi-harmonious, is, $$\overline {{\cal R}(P + Q)} R}(2I both orthogonally complemented H, it shown i(I I P, unitarily equivalent via unitary operator . counterexample constructed, which shows same may not true when fails semi-harmonious. Likewise, constructed whereas Some additional examples indicating new phenomena acting C*-modules also provided.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximately higher Hilbert $C^*$-module derivations

We show that  higher derivations on a Hilbert$C^{*}-$module associated with the Cauchy functional equation satisfying generalized Hyers--Ulam stability.  

متن کامل

$G$-dual Frames in Hilbert $C^{*}$-module Spaces

In this paper, we introduce the concept of $g$-dual frames for Hilbert $C^{*}$-modules, and then the properties and stability results of $g$-dual frames  are given.  A characterization of $g$-dual frames, approximately dual frames and dual frames of a given frame is established. We also give some examples to show that the characterization of $g$-dual frames for Riesz bases in Hilbert spaces is ...

متن کامل

Isomorphisms of Hilbert C*-Modules and ∗-Isomorphisms of Related Operator C*-Algebras

Let M be a Banach C*-module over a C*-algebra A carrying two A-valued inner products 〈., .〉1, 〈., .〉2 which induce equivalent to the given one norms on M. Then the appropriate unital C*-algebras of adjointable bounded A-linear operators on the Hilbert A-modules {M, 〈., .〉1} and {M, 〈., .〉2} are shown to be ∗-isomorphic if and only if there exists a bounded A-linear isomorphism S of these two Hi...

متن کامل

A Hilbert C-module Admitting No Frames

We show that every infinite-dimensional commutative unital C∗-algebra has a Hilbert C∗-module admitting no frames. In particular, this shows that Kasparov’s stabilization theorem for countably generated Hilbert C∗-modules can not be extended to arbitrary Hilbert C∗-modules.

متن کامل

What is a Hilbert C ∗-module? ∗

In this paper we view some fundamentals of the theory of Hilbert C-modules and examine some ways in which Hilbert C-modules differ from Hilbert spaces. ∗2000 Mathematics Subject Classification. 46L08.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chinese Annals of Mathematics, Series B

سال: 2023

ISSN: ['0252-9599', '1572-9133', '1860-6261']

DOI: https://doi.org/10.1007/s11401-023-0018-9